The General Transcriptional Repressor Tup1 Is Required for Dimorphism and Virulence in a Fungal Plant Pathogen
نویسندگان
چکیده
A critical step in the life cycle of many fungal pathogens is the transition between yeast-like growth and the formation of filamentous structures, a process known as dimorphism. This morphological shift, typically triggered by multiple environmental signals, is tightly controlled by complex genetic pathways to ensure successful pathogenic development. In animal pathogenic fungi, one of the best known regulators of dimorphism is the general transcriptional repressor, Tup1. However, the role of Tup1 in fungal dimorphism is completely unknown in plant pathogens. Here we show that Tup1 plays a key role in orchestrating the yeast to hypha transition in the maize pathogen Ustilago maydis. Deletion of the tup1 gene causes a drastic reduction in the mating and filamentation capacity of the fungus, in turn leading to a reduced virulence phenotype. In U. maydis, these processes are controlled by the a and b mating-type loci, whose expression depends on the Prf1 transcription factor. Interestingly, Δtup1 strains show a critical reduction in the expression of prf1 and that of Prf1 target genes at both loci. Moreover, we observed that Tup1 appears to regulate Prf1 activity by controlling the expression of the prf1 transcriptional activators, rop1 and hap2. Additionally, we describe a putative novel prf1 repressor, named Pac2, which seems to be an important target of Tup1 in the control of dimorphism and virulence. Furthermore, we show that Tup1 is required for full pathogenic development since tup1 deletion mutants are unable to complete the sexual cycle. Our findings establish Tup1 as a key factor coordinating dimorphism in the phytopathogen U. maydis and support a conserved role for Tup1 in the control of hypha-specific genes among animal and plant fungal pathogens.
منابع مشابه
SCF Ubiquitin Ligase F-box Protein Fbx15 Controls Nuclear Co-repressor Localization, Stress Response and Virulence of the Human Pathogen Aspergillus fumigatus
F-box proteins share the F-box domain to connect substrates of E3 SCF ubiquitin RING ligases through the adaptor Skp1/A to Cul1/A scaffolds. F-box protein Fbx15 is part of the general stress response of the human pathogenic mold Aspergillus fumigatus. Oxidative stress induces a transient peak of fbx15 expression, resulting in 3x elevated Fbx15 protein levels. During non-stress conditions Fbx15 ...
متن کاملThe Tup1-Cyc8 protein complex can shift from a transcriptional co-repressor to a transcriptional co-activator.
Cyc8(Ssn6)-Tup1, a general co-repressor complex, is recruited to promoter DNA via interactions with DNA-binding regulatory proteins and inhibits the transcription of many different yeast genes. Previous studies have established that repression function of the complex is performed by one subunit of the complex, the Tup1 protein, and requires specific components of the RNA polymerase II holoenzym...
متن کاملMutational analysis of the Tup1 general repressor of yeast.
The Tup1 and Ssn6 proteins of Saccharomyces cerevisiae form a general transcriptional repression complex that regulates the expression of a diverse set of genes including aerobically repressed hypoxic genes, a-mating type genes, glucose repressed genes, and genes controlling cell flocculence. To identify amino acid residues in the Tup1 protein that are required for repression function, we selec...
متن کاملCorrection for The Yak1 Kinase Is Involved in the Initiation and Maintenance of Hyphal Growth in Candida albicans
Members of the dual-specificity tyrosine-phosphorylated and regulated kinase (DYRK) family perform a variety of functions in eukaryotes. We used gene disruption, targeted pharmacologic inhibition, and genome-wide transcriptional profiling to dissect the function of the Yak1 DYRK in the human fungal pathogen Candida albicans. C. albicans strains with mutant yak1 alleles showed defects in the yea...
متن کاملA WD40-repeat containing protein, similar to a fungal co-repressor, is required for transcriptional gene silencing in Chlamydomonas.
In higher plants, mammals, and filamentous fungi, transcriptional gene silencing is frequently associated with DNA methylation. However, recent evidence suggests that certain transgenes can be inactivated by a methylation independent mechanism. In the unicellular green alga Chlamydomonas reinhardtii, single-copy transgenes are transcriptionally silenced without discernible cytosine methylation ...
متن کامل